منابع مشابه
The F-coindex of some graph operations
The F-index of a graph is defined as the sum of cubes of the vertex degrees of the graph. In this paper, we introduce a new invariant which is named as F-coindex. Here, we study basic mathematical properties and the behavior of the newly introduced F-coindex under several graph operations such as union, join, Cartesian product, composition, tensor product, strong product, corona product, disjun...
متن کاملReformulated F-index of graph operations
The first general Zagreb index is defined as $M_1^lambda(G)=sum_{vin V(G)}d_{G}(v)^lambda$. The case $lambda=3$, is called F-index. Similarly, reformulated first general Zagreb index is defined in terms of edge-drees as $EM_1^lambda(G)=sum_{ein E(G)}d_{G}(e)^lambda$ and the reformulated F-index is $RF(G)=sum_{ein E(G)}d_{G}(e)^3$. In this paper, we compute the reformulated F-index for some grap...
متن کاملSome New Results On the Hosoya Polynomial of Graph Operations
The Wiener index is a graph invariant that has found extensive application in chemistry. In addition to that a generating function, which was called the Wiener polynomial, who’s derivate is a q-analog of the Wiener index was defined. In an article, Sagan, Yeh and Zhang in [The Wiener Polynomial of a graph, Int. J. Quantun Chem., 60 (1996), 959969] attained what graph operations do to the Wiene...
متن کاملComputing GA4 Index of Some Graph Operations
The geometric-arithmetic index is another topological index was defined as 2 deg ( )deg ( ) ( ) deg ( ) deg ( ) G G uv E G G u v GA G u v , in which degree of vertex u denoted by degG (u). We now define a new version of GA index as 4 ( ) 2 ε ( )ε ( ) ( ) ε ( ) ε ( ) G G e uv E G G G u v GA G u v , where εG(u) is the eccentricity of vertex u. In this paper we compute this new t...
متن کاملOn Powers of Some Graph Operations
Let $G*H$ be the product $*$ of $G$ and $H$. In this paper we determine the rth power of the graph $G*H$ in terms of $G^r, H^r$ and $G^r*H^r$, when $*$ is the join, Cartesian, symmetric difference, disjunctive, composition, skew and corona product. Then we solve the equation $(G*H)^r=G^r*H^r$. We also compute the Wiener index and Wiener polarity index of the skew product.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SpringerPlus
سال: 2016
ISSN: 2193-1801
DOI: 10.1186/s40064-016-1864-7